Emphasis on technology in schools has made computers available to children in educational programs throughout the country. Books are brought to life on the screen, and children explore the world from their desktops via the World Wide Web. With modifications of hardware and software, teachers of children who are deafblind can take advantage of this exciting technology to enhance communication development, educational activities, and leisure time.

A child’s physical, sensory, and cognitive abilities play important roles in determining appropriate computer activities. Although all three areas overlap, computer input and output methods are primarily determined by physical and sensory abilities; selection of educational software programs is determined by a child’s cognitive abilities and educational objectives.

This article presents an overview of computer modifications, adaptive equipment, and selected software programs used with children in the Deafblind Program at Perkins School for the Blind. Many other modifications and software programs are available that are appropriate for deafblind children. The examples and ideas presented here can be applied to a variety of other types of computer equipment and programs. For additional information, see the resources listed at the end of the article.

Input Methods

Most computer systems use a keyboard and/or mouse for input to the computer. These devices present a barrier for many deafblind children because of visual or physical limitations. The following suggestions address how to work with a standard keyboard or mouse as well as alternatives to these devices.

Using a Mouse or Mouse Replacement

The use of a standard mouse requires good visual and motor skills. Children who are deafblind may be able to use a standard mouse with some modifications or they may need an alternative device.

Promoting mouse skill development. If it is physically possible for the child to use a mouse, design activities that encourage development of this skill. A drawing program, for example, may provide an enjoyable and rewarding activity that a child can use to learn control of the mouse. Popular drawing programs such as Kid Pix (Broderbund) and Kid Works Deluxe (Knowledge Adventure) add an auditory component to the drawing activity and provide a wide array of colors and drawing features.

Mouse placement. Placing the mouse on something such as a box brings it closer to the screen and makes it easier for the child to see the direct relationship between the movement of the mouse and the movement of the pointer on the screen. Placing the mouse on a slanted surface such as an empty three-ring binder helps reinforce the concept that pushing the mouse up or down moves the screen pointer up or down.
Pointer enlargement. Enlargement of the pointer will help the child locate and follow it on the screen. The size of the pointer can be increased through the mouse control panel in Windows. For Macintosh computers, mouse control panels such as Biggy (R.J. Cooper) can be added to the system software. There are also other settings that can be used to enhance mouse visibility. For example, in Windows you can set the mouse to leave a “trail” as it moves across the screen for easier tracking and to show the location of the pointer when you hit the control key.

Tactile or visual mouse cues. A tactile “reminder” such as a small fuzzy piece of velcro on the mouse button helps the child locate the button and reminds him where to press. On a mouse with two buttons, the velcro pad or a colored dot helps thechild discriminate between the two buttons.

Tracking speed. Mouse tracking speed and double-click settings can be controlled using the mouse control panel in existing system software. A very slow setting prevents the pointer from moving too quickly across the screen.

Trackballs. A trackball is a mouse alternative that looks like a mouse turned upside down. The ball is rolled within its socket to move the pointer. This requires less arm movement than moving a mouse around, making it easier for a child with limited motor abilities to use. Some trackballs such as Penny & Giles rollerball Light and Penny & Giles Trackball Plus (Don Johnston) and SAM-Trackball (R.J. Cooper), have utility programs that allow for control of cursor speed and other functions.

Joysticks. A joystick mouse allows the child to control the pointer by moving the joystick in the desired direction. A foam covering can be added for those with limited grasp abilities. SAM-Joystick (R.J. Cooper) and Penny & Giles Joystick (Don Johnston) have a tracking speed that is considerably slower than a traditional mouse and the buttons can be set to perform specific functions such as click, double-click, and lock-button-down for drag.

Touch screens. A touch screen allows a child to interact directly with the computer program by using his or her finger to point to objects on the screen as a replacement for mouse actions. Examples of touch screens include TouchWindow (Edmark), which attaches to a monitor with velcro, and Troll Touch, monitors with built-in touch screens.

Hot spots. A hot spot is an active location on the screen where the user might “point and click,” resulting in action within the program. For example, in an interactive storybook, children can click on characters or objects resulting in animation, music or sounds. Once identified, the hot spot can be accessed through an alternative keyboard or with a switch. ClickIt! (IntelliTools) and Discover:Switch (Don Johnston) are examples of software programs used to create hot spots.
Keyboard Adaptations and Alternatives

Standard computer keyboards present a challenge for many children. The letters and keys are small and contain numerous characters, and the keys are highly sensitive. For children with good motor skills and cognitive ability, learning keyboarding skills is a reasonable goal. Many children who are deafblind, however, will need a keyboard alternative.

Keyguards. Keyguards (Don Johnston, TASH) have corresponding holes for each key and are used to prevent unwanted key presses. They are usually made from plexiglass and attach to standard keyboards with heavy duty velcro. A keyguard also makes it possible for children with limited motor abilities to use keys such as shift and control which require two fingers, by providing a latch for each of these keys.

Slant boards. A slant board can be used to position the keyboard at a different angle or bring it closer to the screen. They are good for children with motor difficulties who use a head- or mouth-stick and may fatigue quickly if the keyboard is flat on the table. They are also useful for children with limited vision who do not have touch typing skills and may tire easily or lose their place because they constantly have to shift their focus from the screen to find letters on the keyboard. A slant board can be constructed from lightweight plywood or TriWall, a heavyweight triple layer corrugated cardboard.

Expanded or membrane keyboards. Expanded or membrane keyboards can have keys of any size printed on overlays. Each overlay may consist of letters, numbers, words, phrases, pictures or combinations thereof, customized for each child to specific software programs. Individual keys may perform multiple-step functions such as printing, saving, or moving to a different file or program. IntelliKeys (IntelliTools) comes with a standard set of overlays. Custom overlays can be created using Overlay Maker (IntelliTools). Other expanded keyboards include Discover:Board and Key Largo (Don Johnston).

On-screen keyboards. On-screen keyboards work well for children with low vision who do not have keyboarding skills because they allow the child to keep his or her head upright and focused on the screen, eliminating the need to look from the screen to the keyboard to search for letters. OnScreen (R.J. Cooper) uses standard alphanumeric keyboard characters. Discover:Screen (Don Johnston) lets the user design different keyboards containing letters, words, phrases, and pictures.

Word-prediction programs. Word-prediction programs are useful for children with limited physical abilities, poor spelling, or slow typing skills. The program attempts to guess each word as the child types the beginning of a word and presents the guesses in a numbered list. The child then selects the correct word from the list and the word prediction program transfers the word into the application. This reduces the number of keystrokes required to enter text and provides correctly spelled words. Co:Writer (Don Johnston) is one word-prediction software program.

Switches. Children with physical limitations may not have sufficient motor control to access a mouse or keyboard. If the child is able to produce a reliable motor movement, he or she may use a switch (Don Johnston, Ablenet, TASH) as a substitute. One of the most commonly used switches looks like a large button which the child presses to activate. Other switches are available with a variety of specifications to meet different fine and gross motor abilities. Software programs used to help children learn the concept of cause and effect generally require switch input for interaction with the program. Switches are also utilized in scanning, an input method for children who are unable to use direct selection. A switch interface is required to connect a switch to the computer.

Output Methods

Visual output is a major component of most computer activities for children. Many programs contain colorful graphics, animation, and QuickTime movies. Recent software programs also integrate sounds, digitized speech, and music. A child who is deafblind may have difficulty accessing these programs due to visual limitations and may not have sufficient hearing to benefit from the sound component.

Visual Output

Monitor positioning. The monitor should be positioned at eye level for the child. For some children this may mean placing the monitor on a table instead of on the CPU, or using an adjustable chair or table. Monitor arms, available at most office and computer supply centers, allow the monitor to be easily adjusted.

Monitor size. Typical monitors have a 13- or 14-inch screen, but monitors are available with screens up to 21 inches. Larger monitors increase the size of the
viewing area. This can be beneficial when using a screen-enlargement program.

Font size. The font size of labels for applications and documents can be increased using the Views control panel on Macintosh computers or Accessibility Options in Windows 95 or 98. Large fonts make it easier for children with low vision to locate their documents and programs on the desktop.

Screen-enlargement software. Screen-enlargement software performs adjustments such as screen magnification, cursor tracking, inversion of screen colors, split screen viewing, and screen review. Screen navigation is possible through the use of keyboard commands or the mouse. Examples include ZoomText Xtra (Ai Squared) and MAGic (Henter-Joyce) for Windows and inLarge (Alva Access) for the Macintosh.

Braille displays and screen readers. Braille readers can use a refreshable braille display such as PowerBraille (Blazie) on Windows computers to access the screen. A screen reader translates the information on the screen for output to a speech synthesizer for children who can understand speech. Some screen readers include support for braille displays. Window-Eyes (GW-Micro) and Jaws for Windows (Henter-Joyce) are two popular screen readers.

SoundOutput

Built-in speakers. Most computers have built-in speakers for sound output. Children who wear hearing aids may be able to hear sounds produced by the built-in speakers if the quality of the speakers is good.

Amplified speakers. Volume and vibration can be increased significantly with the use of amplified speakers. Amplified speakers are sometimes included in computer packages. They are also available from computer stores, computer mail order companies, and some electronics stores. The Interactor Cushion (AURA) is a seat cushion with a built-in amplified speaker that provides outstanding vibrational feedback of music software programs that have a heavy bass component.

FM systems. Children who use an FM Auditory Trainer can use the headphone jack in the computer and FM unit to directly receive sounds in the FM unit.

Educational Software Programs

There are hundreds of educational software programs available that address learning activities such as understanding cause and effect, choice making, language development, reading and writing, math, science, creative thinking, and communication. The selection of software programs for children who are deafblind depends upon each child’s cognitive level, educational objectives, and sensory abilities.

Individual software programs can be adapted using some of the input and output methods described above to meet the learning needs of children of a variety of ages and cognitive abilities. Listed below are four different types of software programs along with examples of how each can be modified to meet different needs. Many of these ideas can be applied to other software programs to customize activities for children who are deafblind.

Art/Creativity Software

Kid Pix Studio Deluxe (Broderbund) is a multimedia drawing program. It has a wide array of tools for drawing; making lines, boxes, and circles; stamping graphics; and entering text. This program is appropriate for children as young as preschool age, yet can be fun for teenagers too. The following examples show some of the ways this program can be used.

An initial computer activity for young children. Use with a touch screen as a means of introducing very young children to the computer. The teacher makes color and other drawing selections using the mouse as the child scribbles on the screen with his or her finger to create a picture. As the child becomes familiar with the program, wonderful opportunities arise for encouraging the use of language for activities such as requesting color changes and labeling objects and pictures.

Teaching about cause and effect. One of the drawing tools available is a mixer tool that shakes up the picture on the screen. It can be used with a touch screen or switch to teach cause-and-effect activities to children of any age. Create a random drawing on the screen, select the mixer tool and place the pointer somewhere on the drawing. Each time the child touches the screen or presses the switch, the screen will change according to the mixer setting. Some settings produce a dramatic change, creating a rewarding cause-and-effect activity. There is also an eraser tool with several choices that produce dramatic screen actions.

Mouse or joystick training. Use a trackball or adapted joystick with the button locked down. Select a colorful paintbrush and place the pointer in the drawing area. As the child moves the trackball or joystick, large colorful graphics appear on the screen. Children who can use the mouse learn to “drag” or hold the mouse button down as they move it.
Teaching choice making. Drawing activities can be used as a way to help learn other skills such as with the use of a picture communication system. Give the child picture symbols associated with particular drawing tool functions (e.g., color, shape) or place them on an overlay for an expanded keyboard. The teacher then draws the picture according to the choices made by the child. Some children actually enjoy watching a picture being created more than drawing it themselves.

Interactive Story Books

A number of popular children’s books have been transformed into interactive, animated stories on CD-ROM. Examples include The Cat in the Hat, Arthur’s Reading Race, Little Monster at School, and Sheila Rae the Brave (Living Books/Broderbund). Although the programs are labeled appropriate for children from Kindergarten through Grade Four, meaningful activities can be created for children of other ages as well, when used with appropriate modifications.

Cause-and-effect activities. Each “page” of the book contains objects and/or characters that animate when the user mouse-clicks on them. Create hot spots for each active area on the screen. Use the scanning option with highlighting turned off to have the hot spots scanned invisibly. Each time the child presses the switch, a different hot spot is activated resulting in a random cause-and-effect activity.

Language activities.

♦ Using a touch screen, have the child identify and point to specific objects and characters. The child is rewarded with animation and sound each time he or she touches a requested object.

♦ Use a program to create hot spots and an alternative keyboard as described under Input Methods above. Make an overlay for an expanded keyboard with pictures of objects on the screen. The child can point to pictures on the keyboard to activate specific hot spots. This is an ideal activity to encourage the use of pictures and reinforce pointing to pictures. Overlays can also be created that contain line drawings, words and phrases or sentences related to objects, characters, and actions on the screen.

♦ Children can create their own version of a story by printing screens and using their own language to retell the story in Sign Language or in writing.

♦ Children who have some hearing can enjoy having a story read to them at a slower pace by using the mouse to click on each word to hear it spoken.

Either the teacher or student can control the mouse for this activity.

Word Processing Programs

Word processing programs that have large print options and speech output include IntelliTalk (IntelliTools) and Write:OutLoud (Don Johnston). Each has options that allow the user to change text, background colors, font size, and voice.

♦ Use an expanded keyboard to create writing activities that address curriculum topics, daily schedules, lunch menu choices, spelling vocabulary, and special activities. Words, picture symbols, and photographs can be used in the overlays.

♦ Expanded keyboards can also be used to create keys that take the place of multistep functions. For example, some children may be able to use a word processor for basic writing activities but have difficulty with functions such as printing. An expanded keyboard with an overlay can be set up to perform these functions with a single key press.

♦ Use an on-screen keyboard with a word processing program for children with low vision and poor typing skills. Overlays, as described above, also work well with an on-screen keyboard such as Discover:Screen.

Cause-and-Effect Software Programs

In addition to the option of creating cause-and-effect activities using “off-the-shelf” software as described in some of the previous examples, a number of programs are available that were created specifically to encourage cause-and-effect learning using switch access.

RadSounds (R.J. Cooper). Intended for teenage users, this program has 20 choices of music, ranging from heavy rock and roll to popular songs. Colorful dancers appear on the screen accompanied by music. Amplified speakers or the Interactor Cushion (AURA), which provides feedback through vibration, allow children with limited hearing to enjoy the program.

UKanDu Switches, Too! (Don Johnston) is a series of cause-and-effect programs with large colorful graphics for young children. The programs provide the opportunity for simple sequencing to be addressed in a story format. When the switch is pressed, the story progresses one step until completion. For example, in Mary Wore Her Red Dress (Eensy & Friends), the child helps Mary dress by...
pressing the switch to add dress, socks, shoes, and hat, one at a time.

Switch Basics (SoftTouch) is another single-switch program with large clear graphics. The program contains nine different activities that use sounds, music, photographs, and colorful graphics to address simple switch use, turn-taking and scanning skills.

Press to Play (Don Johnston) is a series of switch-activated programs that progress from simple cause-and-effect activities to beginning scanning skills training. The programs present a single picture cue on a black background with a large colorful graphic reward for each switch activation.

Information Resources

Closing the Gap
P.O. Box 68
Henderson, MN 56044
(507) 248-3294
http://www.closingthegap.com
info@closingthegap.com

RESNA (Rehabilitation Engineering and Assistive Technology Society of North America)
1700 North Moore St., Ste. 1540
Arlington, VA 22209-1903
(703) 524-6686
(703) 524-6639 tty
http://www.resna.org
info@resna.org

ABLEDATA
8401 Colesville Road, Ste. 200
Silver Spring, MD 20910
(800) 227-0216
(301) 608-8912 tty
http://www.abledata.com
kabelknap@aol.com

Alliance for Technology Access
2175 E. Francisco Blvd., Ste. L
San Rafael, CA 94901
(415) 455-4575
(415) 455-0491 tty
www.ATAccess.org
ATAinfo@ATAccess.org

Company Information

Ablenet, Inc.
1081 10th Ave. S.E.
Minneapolis, MN 55414
(800) 322-0956
http://www.ablenetinc.com
customerservice@ablenetinc.com

Ai Squared
P.O. Box 669
Manchester Center, VT 05255
(802) 362-3612
http://www.aisquared.com
zoomtext@aisquared.com

Alva Access Group, Inc.
http://www.aagi.com
info@aagi.com

Aura
Interactor Cushion Distributor
Sign-Along Communications, Inc.
3111 Route 3 #11, Ste. 304
Mt. Laurel, New Jersey 08054
(888)-917-SIGN
http://www.advanix.net/~ameslan/FeelSound.html
kp@sign-along.com

Blazie Engineering
105 E. Jarretsville Rd.
Forest Hill, MD 21050
(410) 893-9333
http://www.blazie.com
info@blazie.com

Broderbund Software, Inc.
500 Redwood Blvd., P.O. Box 6121
Novato, CA 94948
(800) 521-6263
www.broderbund.com/education/programs
cust_serv@learningco.com

Don Johnston Incorporated
26799 West Commerce Dr.
Volo, IL 60073
(800) 999-4660
http://www.donjohnston.com
info@donjohnston.com

Edmark Corporation
P.O. Box 97021
Redmond, WA 98073
(800) 691-2986
http://www.edmark.com
edmarkteam@edmark.com
Research-to-Practice

Parent Perspectives on Psychoeducational Assessment: Filling the Gap Between Parents and Practitioners

Harvey H. Mar, Ph.D., Project Director
Nancy Sall, Ed.D., Project Coordinator

An evaluator is preparing to conduct an assessment of a 7-year-old child who is deaf-blind. The child attends a special education program for children with severe disabilities where he receives speech/language therapy, occupational therapy, and mobility training. Materials are gathered, necessary papers collected, and the test kit is organized.

Is the evaluator ready to conduct a psychoeducational assessment on this child? As we talk to more and more parents, we are learning that the answer is, “Not really.”

Psychoeducational assessment is the process of carefully gathering information to learn about an individual’s cognitive abilities, communication skills, social experiences, behaviors, interests, and learning style. Results from an assessment can be used to generate educational goals and to identify the best strategies and resources to help a child achieve those goals.

Because individuals who are deaf-blind are so diverse in their sensory functioning, as well as in their learning and communication skills, assessment of deaf-blind children can be a challenging task. Numerous concerns exist regarding how assessments should be conducted. The reliability of the assessment results is another important issue. Do they give an accurate picture of a particular child’s abilities?

A recent project, Psychoeducational Assessment of Students who are Deaf-Blind, conducted a survey and held a focus group with parents and guardians of school-age children who are deaf-blind in an effort to determine their thoughts and concerns regarding the assessment process. Twenty-five parents responded to the survey and four participated in the focus group, sharing experiences about their own children’s psychoeducational evaluations. The following suggestions were compiled from their input.
What can evaluators do to make sure assessments are useful and accurate?

Use an evaluator who has experience working with deaf-blind children. Evaluators who are accustomed to working with deaf-blind children and are sensitive to their needs have a better grasp of the concerns and issues unique to these students and their families.

Communicate directly with the student. It is important to understand how each child communicates. The evaluator needs to use the child’s own communication methods (e.g., Sign Language, gestures, words, tactile signs, body language, facial expression) during the evaluation.

Become familiar with techniques for adapting test materials for children who are deaf-blind. Parents expressed frustration with evaluations that were performed using tests and procedures designed for children with normal sight and hearing. These materials are not appropriate for deaf-blind children.

Spend time becoming familiar with the child prior to formal testing. Perhaps one of the most important parts of the assessment process, from the perspective of parents, is preparing for the assessment by learning as much as possible about the student prior to the evaluation. One father stated that the very first step of an evaluation should be to get to know the child and what his or her likes and dislikes are. Another child’s mother pointed out that people who don’t have contact with her daughter on a regular basis don’t understand what she is saying.

Be patient and take time to do the evaluation. When evaluating deaf-blind children it is essential to take enough time to give them a chance to succeed. It may be useful to conduct the evaluation over more than one session.

Include the family in the evaluation process. Ask parents for their input. Parents favored evaluations in which the practitioner took the time to contact them directly. Also take into consideration how cultural factors such as different racial backgrounds may affect the assessment process.

Include clear, easy-to-understand recommendations in the written report. The report should include suggestions for future goals and specific concrete interventions that can be used at school, at home, and in other settings. One parent commented that a helpful feature of her son’s evaluation report was that it listed goals that weren’t solely related to therapy, but could be used in everyday life. Avoid the use of jargon or excessively technical language. Parents may feel overwhelmed by the use of professional jargon in reports or during meetings.

Make sure that the information in the written report is accurate. Some parents indicated that while parts of their children’s reports were satisfactory, other parts could be misconstrued or contained incorrect information. For example, the copy of a report one parent received stated that her son had bronchitis, but the parent had told the evaluator that her son had meningitis.

Make sure the parents receive a copy of the written report. On more than one occasion, parents indicated that they had never seen a copy of the report or they were unaware that an evaluation had been conducted.

How can psychoeducational assessments be used by parents?

Comments from parents focused on ways that psychoeducational assessments could support them at home. One parent indicated that she would like to have progress reports made available to her on a regular basis and felt that she would benefit from guidance about how to help her daughter at home. Others also felt it would be useful to receive training to help them work with their children to promote their independence and ability to communicate and interact in natural environments.

Summary

Results from this study can be used to bridge the gap between what parents and professionals know about psychoeducational assessment. The meetings and interviews conducted by this project have resulted in a greater awareness of parents’ perspectives regarding the assessment process and can be used to broaden professionals’ understanding of psychoeducational assessment. Based on what parents are saying, a psychoeducational evaluation must go beyond merely conducting a test or writing a report. Assessments should include parents as members of the team, and professionals should be experienced in working with individuals who are deaf-blind. Assessment also should focus on communication. It should use appropriately adapted materials and should result in meaningfully written reports that emphasize purposeful and functional interventions.

Psychoeducational Assessment of Students who are Deaf-Blind: A Decision-Making Model for School-Based Practitioners (Grant #H1025De0011) is a three-year funded project from the U. S. Department of Education, Office of Special Education Programs. This article was prepared by Nancy Sall. The contents do not necessarily reflect the position of the U. S. Department of Education.

The authors gratefully acknowledge the contributions and support of the families who participated in this study. We also wish to express our sincere thanks to Carrie Masten of NFADB for her help with the survey.
Resources for Deaf-Blind Children and Youth
Lisa Jacobs, DB-LINK

Parents of children who are deaf-blind have much to be proud of. Their long history of advocacy for their children has succeeded in creating resources to support the goal of quality educational programs. This article describes three federally funded agencies that provide services and support to children who are deaf-blind, parents, teachers, and other service providers:

- State and Multi-State Projects for Children and Young Adults Who Are Deaf-Blind
- NTAC, The National Technical Assistance Consortium for Children and Young Adults who are Deaf-Blind
- DB-LINK, The National Information Clearinghouse on Children who are Deaf-Blind

These agencies are funded by the Office of Special Education Programs (OSEP), which is part of the Department of Education located in Washington, DC. OSEP oversees the funding of the Individuals with Disabilities Education Act (IDEA), and IDEA funding supports these three agencies. Information about NFADB, The National Family Association of Deafblind, a nonprofit, volunteer-based family association, is also listed below.

State and Multi-State Projects for Children and Young Adults Who Are Deaf-Blind

These deaf-blind projects provide assistance and training opportunities to families and to teachers, other professionals, and agencies involved with deaf-blind children (birth to age 22). The projects are responsible for identifying children who are deaf-blind in their states, and they collect statistics about the number and characteristics of deaf-blind children for a national census compiled by NTAC. In general, there is one deaf-blind project in each state, but some projects serve a group of states.

The deaf-blind projects conduct surveys in order to determine the types of assistance needed in a particular state. The educational needs of deaf-blind children and youth are unique. A deaf-blind child or people working with a deaf-blind child may need information or training in a number of areas. These include such topics as communication skill development, educational strategies, behavior management, vision and hearing loss, orientation and mobility, transition, and inclusion. Some of the services offered by states to meet these needs include workshops and other types of training events, consultations, online courses, newsletters, fact sheets, lending libraries, opportunities for parent-to-parent contact, and family retreats. Many state projects collaborate with universities and teacher preparation programs to provide information to future teachers.

If you don’t know how to contact the deaf-blind project in your state, call DB-LINK. If you are aware of your state project, but have lost touch with it, call to find out what types of training opportunities or meetings are happening in your state.

The state deaf-blind projects work closely with NTAC, DB-LINK, and NFADB to enhance each project’s current activities and to further develop state and local resources.

NTAC, The National Technical Assistance Consortium for Children and Young Adults who are Deaf-Blind

NTAC provides assistance and support to families, service providers, and agencies involved with deaf-blind children and youth (birth to age 28) throughout the United States. Its primary goals are to improve services and educational strategies for deaf-blind children and to help states identify all children who can benefit from those services. NTAC works primarily through state deaf-blind projects and local agencies and does not work directly with deaf-blind children. Activities include helping families and agencies in individual states and local areas form good working relationships, develop new services, and improve existing services; providing training opportunities for families and teachers; helping parents gain knowledge about services for their child and develop advocacy skills; and helping young deaf-blind adults develop the skills they need to advocate for themselves and take control of their own lives.

For a description of some of the recent activities of NTAC see “NTAC Updates” in this issue of Deaf-Blind Perspectives.

Contact NTAC staff at:
Teaching Research
Voice: (503) 838-8391
TTY: (503) 838-8821
E-mail: ntac@wou.edu

Or,
Helen Keller National Center
Voice & TTY: (516) 944-8900 Ext. 307
DB-LINK, The National Information Clearinghouse on Children who are Deaf-Blind

DB-LINK is a national project that collects and distributes information about deaf-blindness to anyone who needs it, including parents, teachers, state deaf-blind project staff, and other professionals. Services include an information center with a large collection of books, journals, newsletters, videos, and other types of materials; referrals to organizations and groups involved in deaf-blindness; and an extensive web site. DB-LINK has also produced a number of publications on a variety of topics including communication and orientation and mobility, and in collaboration with NTAC, publishes the newsletter Deaf-Blind Perspectives three times a year. Information specialists are available to respond to individual requests for information, including in-depth research.

Phone: (800) 438-9376
TTY: (800) 854-7013
E-mail: dblink@tr.wou.edu
Web: www.tr.wou.edu/dblink

NFADB, The National Family Association of Deafblind

is a great resource for information, support, and camaraderie. Through a network of regional volunteers, families can connect with other families and locate support, advocacy, and experience close to home. In cooperation with NTAC, the organization holds a summer workshop for families each year. The association also publishes a great newsletter three times a year.

(800) 255-0411, ext. 275
E-mail: nfadb@aol.com
Web: www.nfadb.org

All of these resources are available for parents and other people involved in the lives of deaf-blind children. It’s easy to connect with the folks who are there to help you.

Fall Start-Ups Focus on Learning: New Model Demonstration Grants

Gail Leslie, DB-LINK

For 20 years, the federal government has supported the education of deaf-blind children with demonstration or research grants that are designed to foster innovation, validate practices, and develop effective service components. Many of the current practices, techniques, and materials that support practitioners have grown out of this program. Three new model demonstration projects were awarded funding in 1999. All three focus on learning needs and strategies. They are directed by researchers who each have a history of directing other projects under this program.

Project SALUTE: Successful Adaptations for Learning to Use Touch Effectively

For many children who are deaf-blind, tactile communication is the primary mode of learning and communication. What are the best ways to teach tactile communication? When should instruction begin? Is there a standardized vocabulary? These are just some of the questions that will drive the work of Project SALUTE. Working with a National Advisory Committee and focus groups across a number of states, project staff will identify, develop, document, and validate tactile learning strategies for children, infants through elementary school age. One focus group in particular will be done with Spanish-speaking families in order to produce materials that are culturally responsive. Materials produced by the project will include a manual and videos for both home and school environments that will be in English, close-captioned, and in Spanish.

Researcher and Project Co-Director Deborah Chen’s expertise includes identification of and early intervention practices for infants who are deaf-blind, establishment of quality indicators of early intervention services, and work with families. She will co-direct this project with June Downing whose work in the field has included research and development of curricula, and training modules in communication.

Project Contact:
Deborah Chen, Ph.D.
California State University, Northridge
18111 Nordhoff St.
Northridge, CA 91330
(818) 677-4604
E-mail: deborah.chen@csun.edu
Project SPARKLE: Supporting Parent Access to Resources, Knowledge, Linkages and Education

For families of children who are deaf-blind, information is essential for meeting the specific needs of their child. Changes in the Individuals with Disabilities Education Act (IDEA) have expanded the role parents play in their child’s education, and parents are finding that they need skills and information to support their participation. Focusing specifically on deaf-blindness, Project SPARKLE will develop a new model of individualized learning that can be tailored to meet specific child and family needs. Using internet technologies and a web site that will be developed for the project, families will have access at home, to training opportunities, materials, community resources, and connections to other families at times that are convenient and meet their needs. Support will also be provided for individualized child programming through state facilitators and parent partners and will extend into the IFSP/IEP process. Project Director Linda Alsop’s previous projects have included design and delivery of home based early intervention services, design of training programs to increase the effectiveness of intervenors, and Project PRIDE, a technology project.

Project Contact:
Linda Alsop
SKI-HI Institute
Utah State University
6500 Old Main Hill
P.O. Box 6582
Logan, UT 84321
(435) 797-5598
(435) 797-5586 (tty)
E-mail: lalsop@cc.usu.edu

NTAC Updates

NTAC (The National Technical Assistance Consortium for Children and Young Adults Who Are Deaf-Blind) provides technical assistance to families and agencies serving children and young adults. The following are descriptions of some of the recent state and national activities that NTAC has participated in.

New Hampshire

ASSETT (Assistive Services to Schools for Education, Technology & Training), the New England Center for Deaf-Blind Services (NEC), and NTAC started the 1999-2000 school year off with a bang by holding a 2-day workshop on communication for deaf-blind students. Dr. Mary Morse, Special Education Consultant with ASSETT, provided in-depth training to teachers and paraprofessionals. Topics covered during the first day of the workshop included early language development, symbolic communication, and augmentative communication systems. The second day focused on strategies for learners with more advanced communication systems. Dr. Morse and NEC will be visiting and providing technical assistance to the workshop participants throughout the school year.
Pennsylvania

The Pennsylvania Deaf-Blind Project and NTAC are working together to begin a new project called BEST (Building Effective Student Teams). Five BEST teams, selected from across the state of Pennsylvania, will receive training in effective practices associated with teaching students who are deaf-blind. The teams will also receive intensive on-site follow-up training throughout the school year as they begin to use the new skills.

Delaware

The Delaware Deaf-Blind project continues to collaborate with NTAC and several state agencies to support the Community Employment Initiative. The goal of this statewide initiative is to improve and expand community employment for individuals who are disabled, including those who are deaf-blind. Based on their experiences and research, the agencies participating in this initiative plan to release a summary of recommendations to improve employment practices throughout the state.

Arkansas

The Arkansas Project for Children with Deafblindness and NTAC recently completed a series of workshops that provided training to families, teachers, other service providers, and community members. The purpose of the workshops was to build the capacity of teams of individuals to provide effective programming for individuals who are deaf-blind and obtain new information and skills based on current practices. Each team received training in the following areas: an overview of deaf-blindness, communication, design and implementation of IEPs, educational strategies, transition planning and programming, and person-centered planning.

Georgia

The Georgia Deaf-Blind Project and NTAC are currently collaborating on some very promising initiatives focusing on family issues. The deaf-blind project recently hired an energetic family representative to help organize family initiatives and guide parents through the process of becoming a possible state chapter of NFADB. The project is also hosting an exciting statewide workshop for siblings and is developing a team of educational advisors to aid the transition of students and their families through the educational system.

National Meeting on Alternate Assessment

This past August, NTAC sponsored a 2-day national meeting in Salt Lake City, to address the alternate assessment needs of students who are deaf-blind. Seventy-seven participants from state and multi-state deaf-blind projects in 41 states, Puerto Rico, and the Pacific Basin attended. The purpose of the meeting was to discuss and share strategies about issues related to the implementation of IDEA ‘97 statewide and alternate assessment requirements.

Drs. Jacqui Farmer Kearns and Jennifer Grisham-Brown from the University of Kentucky presented strategies for developing IEPs for deaf-blind students based on state assessment standards and suggested ways that project directors could use the results of their state assessment data to develop technical assistance activities. Dr. Robin Greenfield (Idaho) and Dr. Suzanne Swaffield (South Carolina) provided overviews of their states’ assessment models, and John Killoran from NTAC provided an overview of IDEA ‘97 and its alternate assessment requirements.

For Your Library

Better IEPs: How to Develop Legally Correct and Educationally Useful Programs

This is a how-to guide that parents and educators can use to develop appropriate educational plans for children with disabilities. It provides tools for creating IEPs that conform to the law and explains the role of the IEP in the larger context of IDEA implementation. Available from: Sopris West, 4093 Specialty Place, Longmont, Colorado 80504, (303) 651-2829, http://www.sopriswest.com

Blind and Visually Impaired Students: Educational Service Guidelines

The intention of this guideline, produced by NASDSE (National Association of State Directors of Special Education) and the Hilton/Perkins Program is to provide assistance to state and local education agencies, service providers, and parents. It describes essential program elements and features that must be considered when designing appropriate services for students who are blind or visually impaired, including students with multiple disabili-
ties. There is no cost for the publication. Available from Publications & Public Relations, Perkins School for the Blind, 175 N. Beacon St., Watertown, MA 02472, (617) 972-7250, Fax (617) 972-7334.

The Complete IEP Guide: How to Advocate for Your Special Ed Child

The purpose of this book is to help parents effectively proceed on their own through the IEP process. It focuses on children between the ages of 3 and 22. It includes information about special education laws and the issues and tasks involved in IEP development. Available from: Nolo.com, Inc., 950 Parker Street, Berkeley, CA 94710, (800) 955-4775, http://www.nolo.com

Deaf-Blind Contact Directory 1999-2000

Includes contact information for AADB members, state and local organizations, services for deaf-blind people, telecommunication relay services, and distributors and manufacturers of assistive technology and other products. Available from the American Association of the Deaf-Blind, 814 Thayer Avenue, Suite 302, Silver Spring, MD 20910-4500. TTY (301) 588-6545, Fax (301) 588-8705, aadb@erols.com

Elderly Deafblindness: Proceedings from 3rd European Conference of Deafblind

Proceedings from the first international conference to focus specifically on elderly deaf-blind individuals. The complete text of the plenary sessions is included in these proceedings. Text and overheads from some of the workshops are also included. The entire proceedings are available on the web: http://www.deafblindinternational.org/papers/elderly.htm. It may also be ordered from Lega del Filo D’oro, Via Montecerno 1, Osimo (Ancona) 60027 Italy, +39.071 72451, Fax +39.07171.7102, green.lfo@usa.net

Essential Elements in Early Intervention: Visual Impairment and Multiple Disabilities

This book presents information about assessment and intervention strategies for infants and young children (birth to 36 months) who have visual impairment in addition to other disabilities, including deaf-blindness. Available from AFB Press, Customer Service, P.O. Box 1020, Sewickley, PA 15143, (800) 232-3044, http://www.afb.org

A Guide to Planning and Support for Individuals Who Are Deafblind

This book focuses on individuals who were born deaf-blind or acquired the disability early in life. Topics include identification, communication, cognitive development, social and emotional development, sexuality, and family issues. Available from University of Toronto Press, Inc., 5201 Dufferin Street, North York, Ontario, (800) 565-9523, utpbooks@utpress.utoronto.ca http://www.utpress.utoronto.ca

Teaching Communication Skills to Students with Severe Disabilities

Helping students with severe disabilities communicate as effectively as possible with teachers and classmates in general education environments is the scope of this book. Much of the information may also apply to other settings such as home, community and workplace environments. The focus is on students with severe cognitive disabilities or developmental delay, autism, severe sensory impairments (including deaf-blindness), or severe physical disabilities.

Implementing Universal Newborn Hearing Screening Programs

Widespread acceptance of the need to identify hearing loss at an early age has given rise to early identification programs for newborns. This booklet provides a checklist of 13 points to assist hospitals in designing a universal newborn hearing screening program. Available from the National Center for Hearing Assessment and Management, Utah State University, 2880 Old Main Hill, Logan UT 84322, (435) 797-3589. The complete text is on the web at http://www.infanthearing.org/impguide
Upcoming Conferences

February

Ninth Symposium on Literacy and Disabilities
February 3-4, 2000
Cary, North Carolina

Contact:
Office of CME, CB# 7321, Chase Hall
University of North Carolina School of Medicine
Chapel Hill, NC 27599-7321
Phone: (919) 962-2118
Fax: (919) 962-1664
jcox@css.unc.edu
http://www.alliedhealth.unc.edu/lit2k

March

14th Josephine L. Taylor Leadership Institute
March 3-5, 2000
Dallas, Texas

The theme this year is “Achieving an Accessible World: Partnerships, Roadblocks, and Opportunities.”

Contact:
Gabriella Smith-Coventry
American Foundation for the Blind
11 Penn Plaza, Suite 300
New York, NY 10001
Phone: (212) 502-7654
Fax: (212) 502-7773
gsmith@afb.net
http://www.afb.org

16th Annual PAC RIM 2000 Conference
March 6-7, 2000
Waikiki, Hawaii

The Pacific Rim Conference is an international forum on disability studies. Sessions focus on critical issues and innovative strategies that make a difference in the lives of people with disabilities. This year’s theme is “Creating Futures: Kaleidoscopes of Opportunity for People with Disabilities.”

Contact:
Valerie Shearer
Center on Disability Studies
Hawaii University Affiliated Program
1776 University Ave., UA 4-6
Honolulu, HI 96822
Phone: (808) 956-2673
valerie@cds.hawaii.edu
http://www.cds.hawaii.edu

April

15th Annual International Conference, “Technology and Persons with Disabilities”
March 20-25, 2000
Los Angeles Airport Hilton Hotel and the Los Angeles Airport Marriott Hotel

Contact:
Center on Disabilities
California State University, Northridge
18111 Nordhoff Street
Northridge, CA 91330-8340
Phone: (818) 677-2578 (Voice/TTY)
Fax: (818) 677-4929
ltm@csun.edu
http://www.csun.edu/cod/

Focus on Access Technology
March 29-31, 2000
Minneapolis, Minnesota

Contact:
Katherine Evans
Rehabilitation Research and Training Center on Blindness and Low Vision
Mississippi State University
P.O. Box 6189
Mississippi State, MS 39762
Phone: (662) 325-2001
kem1@ra.msstate.edu

Australian National DeafBlindness Conference
“Deafblindness: Keeping In Touch Beyond 2000”
April 7-19, 2000
Fremantle, West Australia

Contact:
WA Deafblind Association
PO Box 14
Maylands, Western Australia 6051
Phone: +61 8 9272 1122
Fax: +61 8 9271 3129
TTY: +61 8 9370 3524
wadba@nw.com.au
http://home.connexus.net.au/~dba/confer.htm
May
International Parent to Parent Conference:
“Pioneering Spirit - Blazing New Trails”
May 4-7, 2000
Reno, Nevada

Contact:
Cheryl Dinnell
Nevada Parent Network
University of Nevada, Reno
COE, REPC/285
Reno, NV 89557
Phone: (775) 784-4921, ext. 2352
Fax: (775) 784-4997
cdinnell@scs.unr.edu
http://www.unr.edu/repc/npn

June
Early Connections: Developing Partnerships in
Services to Young Children with Visual
Impairments (birth to age 8)
June 4-8, 2000
Vancouver, BC, Canada

Contact:
Hilton/Perkins Program
175 N. Beacon St.
Watertown, MA 02472
Phone: (617) 972-7447
Fax: (617) 923-8076
hiltonperkins@perkins.pvt.k12.ma.us

July
2000 AER International Conference
July 15-19, 2000
Denver, Colorado

Contact:
Association for Education & Rehabilitation of the
Blind & Visually Impaired (AER)
4600 Duke Street, Suite 430
P.O. Box 22397
Alexandria, VA 22304
Phone: (703) 823-9690
Fax: (703) 823-9695
http://www.aerbvi.org

American Association for the Deaf-Blind
Conference
July 29-August 1, 2000
Columbus, Ohio

The theme for this conference is 21st Century, the
Deaf-Blind Move On!

Contact:
AADB
814 Thayer Ave., Suite 302
Silver Spring, MD 20910-4500
TTY: (301) 588-6545
Fax: (301) 588-8705
aadb@erols.com

August
National Conference of the Foundation Fighting
Blindness: Visions 2000
August 10-13, 2000
Orlando, FL

Contact:
The Foundation Fighting Blindness
Executive Plaza 1, Suite 800
11350 McCormick Road
Hunt Valley, MD 21031-1014
Phone: (888) 394-3937
TTY: (800) 683-5551
http://www.blindness.org

You are welcome to
copy articles from
Deaf-Blind Perspectives. Please provide
the appropriate citations.
I enjoyed this issue of *Deaf-Blind Perspectives* but I am not on your mailing list. Please send future issues to the address below.

I've moved! Please send future issues of *Deaf-Blind Perspectives* to my current address.

I'm buried in interesting publications! Please remove my name from your mailing list.

Name: ___________________________________ Agency: __
Street: ___________________________________ City: ______________________ State: ____ Zip: _____________
E-mail ___________________________________ Comments __

Mark appropriate categories (3 max.)

- Person or parent of person who is disabled
- Special education (e.g., teacher, aide)
- Administration (e.g., Dept. of Ed., project director)
- Service provider (e.g., social worker, group home)
- Technical assistance provider
- Higher education teacher/researcher
- Regular education (non Spec.-Ed.)
- Therapist (e.g., OT/PT/speech)
- Teacher trainer
- Government personnel
- Medical professional
- Other ____________________________

Please send my copy in:

- Grade 2 braille
- Large print
- Standard print
- ASCII (___ Disk __ E-mail)

Mail to: *Deaf-Blind Perspectives*
Teaching Research Division
345 N. Monmouth Ave. Monmouth, OR 97361
or call Randy Klumph (503) 838-8885, TTY (503) 838-8821,
Fax: (503) 838-8150, E-mail: dbp@wou.edu

All issues of Deaf-Blind Perspectives are available on the Internet at www.tr.wou.edu/tr/dbp

Deaf-Blind Perspectives is a free publication, published three times a year by the Teaching Research Division of Western Oregon University. The positions expressed in this newsletter are those of the author(s) and do not necessarily reflect the position of the Teaching Research Division or the U.S. Department of Education. DB-LINK and NTAC contribute staff and resources for content, editing, and publication.

Deaf-Blind Perspectives
Teaching Research Division
Western Oregon University
345 N. Monmouth Ave.
Monmouth, OR 97361

Address Service Requested